SYLABUS

Nazwa przedmiotu/ Course title	Contemporary trends in plant cultivation		
Nazwa jednostki prowadzącej	The F. Górski Institute of Plant Physiology Polish		
przedmiot/Unit name	Academy of Sciences		
Kierunek studiów/Field of study	Doctoral School of Natural and Agricultural Sciences		
Forma studiów/Type of study	Full-time		
Rodzaj przedmiotu/ Course type	Compulsory		
Rok i semestr studiów/Year and	Summer semester 2024/2025		
semester of study			
Stopień, imię i nazwisko			
koordynatora przedmiotu/	Prof. dr hab. inż. Iwona Żur		
Degree, name of co-ordinator			
Stopień, imię i nazwisko osoby			
prowadzącej (osób prowadzących)	Dr hab. inż. Agnieszka Klimek-Kopyra		
zajęcia z przedmiotu/ Degree,			
name of person(s) teaching the	Dr hab. inż. Magdalena Simlat		
course			
Forma(y) zajęć, liczba			
realizowanych godzin/ Type of	Lectures, 7h		
course, number of hours			
Cele p	rzedmiotu/Aim of the course		
The aim of the course is to introduc	e plant cultivation in terms of different agricultural and		
agronomic systems that are benefic	ial to the producer and the environment, the basics of		
creating crop varieties and modern	biotechnological techniques used as tools in plant		
breeding and molecular diagnostics.			
Wymagania wstępne/	Basic knowledge of biology.		
Prerequisites			

	Wiedza/Knowledge:
	A student has the knowledge and understanding of
	agricultural systems, systems of tillage, principles of
	crop rotation and the use of natural, organic, and
	mineral fertilizers in different agricultural systems. In
	addition, the student will know and understand the
Efekty kształcenia/ Learning	genetic basis of crop improvement: conventional
outcomes	methods of plant breeding and the principles of
	heterosis and hybrid breeding as well as the importance
	of assisting plant breeding with molecular techniques
	and biotechnology.
	Umiejętności/Skills:
	A student is able to estimate the extent of the risk
	resulting from the operation of a farm with a
	conventional system, the use of high doses of mineral
	fertilizers and synthetic plant protection products. A
	student is able to analyze the advantages of using
	organic fertilizers and intercrops in plant cultivation. A
	student is able to select the breeding methods
	depending on the species, its manner of propagation
	and the purpose of breeding, and to properly select the
	biotechnological methods supporting the plant
	breeding.
	Kompetencje społeczne/Attitudes:
	A student is prepared to perceive the threats of
	conventional farming system and mineral fertilization
	on the quality of plant raw materials. A student
	perceives the relations between the improvement of
	crop genotypes and progress in agriculture and changes

in the natural environment. A student actively
participates in discussion, independently constructs and
presents arguments in favor of an integrated or organic
farming system. A student formulates objective
opinions on the importance of molecular and
biotechnological techniques in crop improvement.

Treści programowe / Program content

The course covers:

1.Farming systems (conventional, integrated, organic/ecological)

2.Tillage systems (conventional, reduced tillage, conservation tillage, direct seeding)

3. Principles of crop rotation (crop rotation, elements of crop rotation, stubble intercrops,

winter intercrops, catch crops)

4. Fertilisers and fertilization in different farming systems

5.Plant breeding as a science, a practical activity, and a contemporary stage in the evolution of crop plants

6.Genetic basis of crop breeding

7.Conventional methods of plant breeding and basics of heterosis and hybrid breeding

8.Assisted plant breeding by biotechnological methods and the use of molecular markers for genotype identification.

Metody dydaktyczne/ Teaching methods	Lectures	
	Pass mark.	
Sposób(y) i forma(y) zaliczenia /	Successful completion of the course requires	
Evaluation	attendance at lectures and passing the final	
	examination.	
Metody i kryteria oceny/		
Methods and criteria of	Lectures: final grade on material learned in lectures.	
assessment		
Całkowity nakład pracy studenta		
potrzebny do osiągnięcia	7 h - lectures, 10 h - exam preparation, 1 h- exam	
założonych efektów w godzinach	(0.5 ECTS)	

r		
oraz punktach ECTS /Total student		
workload needed to achieve the		
assumed effects in hours and in		
ECTS credits		
Język wykładowy/ Language	English	
Praktyki zawodowe w ramach		
przedmiotu / Internship as part of	-	
the subject		
	1. Kotecki A. (red) 2020. Uprawa roślin. Wyd. UWP	
Literatura /Literature	2. 4. Szempliński W. 2012, Rośliny rolnicze. Wyd. UWM	
	Olsztyn	
	3. Villalobos F.J., Fereres E. (Ed.) 2016. Principles of	
	Agronomy for Sustainable Agriculture. Springer	
	4. Michalik B. (red.). Hodowla roślin z elementami	
	genetyki i biotechnologii. PWRiL. Poznań, 2009	
	5. Acquaah G. Principles of plant genetics and breeding.	
	Blackwell Publishing, 2007	
	6. Suza, W., & Lamkey, K. (Eds.). Molecular Plant	
	Breeding. Iowa State University Digital Press. DOI:	
	10.31274/isudp.2023.133, 2023	
	7. Journals: Euphytica, Molecular Breeding	
Podpis koordynatora przedmiotu/		
Signature of co-ordinator		
Podpis kierownik Szkoły		
Doktorskiej/ Signature of the		
Head of Doctoral School		

Passing rules

1. The exam is conducted and graded by the course coordinator.

2. The exam is conducted in the form of a written test.

3. The written exam consists of open and closed questions - single-choice or multiple-choice scored according to the following rules:

(a) maximum 2 points are awarded for a correct answer in an open question;

b) a correct answer in a single-choice question is awarded 1 point;

(c) for a correct answer to a multiple-choice question, 0.5 point is awarded for each correct answer.

4. The exam grade is based on the total points obtained in the written test and is determined according to the following rules:

Percentage (%) of the	Grade	
total points available	Verbal	Numerical
91 - 100	Very good	5,0
81 - 90	Good plus	4,5
71 - 80	Good	4,0
61 – 70	Satisfactory plus	3,5
55 – 60	Satisfactory	3,0
0 – 54	Fail	2,0

5. An unexcused absence (Terms and Conditions of the Doctoral School § 11 item 1e) from the examination will result in a grade of "2.0" (Fail).

6. The exam is passed when 55% of the total points possible in the written test have been obtained.

7. Positive grades in the examination are not subject to improvement to a higher grade.

8. If a doctoral student receives a fail grade in an exam, she/he is entitled to only one resit exam during the academic year.

9. The resit exam shall be conducted in accordance with these rules.

10. The grade is entered in the student book by the person conducting the exam.